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Characterization of Microstrip Lines near a
Substrate Edge and Design Formulas of

Edge-Compensated Microstrip Lines

EIKICHI YAMASHITA, FELLOW, IEEE, HIDEYUKI OHASHI, AND KAZUHIKO ATSUKI

,&tract — The proximity effects of microstrip lines near a substrate

edge have been pointed out by Pucel as a problem for effectively designing

high-packhrg-density MMIC’S. Proximity effects of this type are analyzed

by using the rectangular boundary division method. The concept of edge-

compensated microstrip lines (ECM lines) is introduced, whereby we can

circumvent the proximity effects on the characteristic impedance. The

design parameters of the ECM lines are given in the form of simple

polynomials together with numerical data. Some experimental results on

tbe line capacitance agree with the theory, with errors of about 1 percent.

I. INTRODUCTION

M ICROSTRIP (MS) lines have been employed as

interconnections between elements in monolithic

microwave integrated circuits (MMIC’S), which hold

promise for many new microwave device applications.

Pucel has pointed out the significance of “proximity ef-

fects” of two types which appear when designing circuit

patterns of high-packing-density GaAs MMIC’S and calls

attention to the absence of analysis methods to estimate

the effects theoretically [1], [2].

One type of proximity effect is observed when a strip

conductor is near a conductor having ground potential on

the top surface of the substrate. This type has already been

analyzed by one of the authors in a recent paper [3]. The

second type is observed when a strip conductor is located

close to a substrate edge. Estimation methods or exact

CAD methods for these proximity effects are urgently

required to avoid tweaking after fabrication processes. The

characteristics of the finite-width open microstrip line have

been studied based on a free-space Green’s function ap-

proach in the past [4].

In this paper, the proximity effects of the second type

are analyzed by using the rectangular boundary division

method proposed in a previous paper [5]. It is assumed
that the cross-sectional dimensions of transmission lines in

MMIC’S are small compared with the wavelengths. This

validates the use of the quasi-TEM wave approximation.
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Fig. 1. Mrcrostnp lines with a substrate edge (also the structure of

edge-compensated microstnp hnes, dcfmed m Section IV).

Then, the concept of edge-compensated microstrip lines to

keep the characteristic impedance constant near a sub-

strate edge is introduced to circumvent the proximity

effects and to expand the interconnection flexibility of

microstrip lines on MMIC substrates. The practical design

parameters of the edge-compensated microstrip lines are

given in the form of numerical data and simple polynomi-

als for CAD work with a curve-fitting procedure. Results

of capacitance measurements are compared with this the-

ory.

11. RECTANGULAR BOUNDARY DIVISION METHOD

FOR ESTIMATING SUBSTRATE EDGE EFFECTS

Fig. 1 shows the structure to be treated here. When the

microstrip conductor on the top of the substrate is located

close to an edge of the substrate and the dimension of the

separation S is decreased, the capacitance between the

strip and the ground conductor is also decreased. Conse-

quently, the characteristic impedance is increased. There-

fore, if this proximity effect is to be circumvented in

high-packing-density MMIC’S, tolerable sizes for S should

be determined before fabrication. The rectangular bound-
ary division method, which has been discussed in a previ-

ous paper for treating the proximity effects of the first

type, is employed here because each dielectric region in

this structure is of the rectangular shape suited to this

method, as shown in Fig. 2. The substrate thickness h and

the strip width W are assumed to be sufficiently small

compared with wavelengths in order to validate the use of

the quasi-TEM wave approximation. The thickness of the

strip conductor t is assumed to be negligible in this paper.

Scalar potentials as the solutions of Laplace’s equation

are first expanded in Fourier series in each rectangular
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Fig. 2. Total structure under study with relevant subareas.

region as follows:

%(~,.Y) ‘$~O(X,.Y)+ 5 Ansinh(&.y) sin(&.x)
~=1

(region l; O<x<p, O<y<h)

(la)

@~(.x, Y) =%O(X,. Y)+ ~ B.sinh(gz.y)sin( &n(a- x))
~=1

(region 2;p<x<a,0<y<h)

(lb)

%(x, Y) = 5 C.sinh(fs. (b–y))sin(gs.x)
~=1

(region 3; O<x<a, h<y<b)

(It)

where

and An, B., and C. are unknown coefficients.

Each term of the Fourier series given in (la) and (lb)

vanishes at the boundary between regions 1 and 2, as well

as at conductor walls. Two functions, @lo( x, y) and

+ZO(X, Y), have been added in the above expressions to
give the potential on the boundary line (x = p, 0< y < h).

Since @lo(x, y) and @20(x, y) should also satisfy

Laplace’s equation, we take approximate forms for these

functions as

r#ho(x>Y)=;f$o (2a)

4%O(X>Y)= (a;;)~oo (2b)

where @ois defined as the potential at the dielectric corner

point, x =p, y = h.

The total electric field energy for these potential func-

tions is given by

f (x)

us Us+l. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-~=f===l
Fig. 3. Spline-knot potential distribution.

where CUand SV denote the dielectric permittivity and the

cross-sectional area of the region v ( v =1,2, 3). It is known

in electrostatics that exact potential functions should mini-

mize the total energy U. Instead of minimizing U by

selecting an infinite number of unknown coefficients, A ~,

B., and C., we use a finite number of spline-knot poten-

tials which represent potentials on the boundary line de-

fined by y = h. That is, the potential on the lboundary,

~(x), is approximately described with the first-order spline

function as

m

j-(x) = ~ ~(x) (O<x<a, y=h,) (4a)
,=1

where

( o (otherwise).

(4b)

Fig. 3 shows how the spline-knot potentials are distributed

on the boundary line, y = h. Because the potential at the

strip conductor ‘is given by V, u, = u,+ ~= V and U. = u,.

= O. We also note that +0 is equal to Uk. Substituting (4)

into (l), we can express the Fourier coefficients in terms of

the spline-knot potentials u, ( i = 1,2,. ... m – 1) as

h

m—l

2 E ‘nl”l

B.=
*=L

qsinh(&2,,h)

(5a)

(5b)



892 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 5, MAY 1989

tn—1

(SC)

where An,, B.,, and C., are defined in Appendix I.

Having found the coefficients, An, B., and C., in terms

of spline-knot potentials 24, (i =1,2, ” “ “, m – 1), we can

carry out the total energy integration (3). The result of the

integration is written in the following form:

nl–1m–1

where a,] (i, j=l,2,. . “, m – 1) are given in Appendix II.

When we impose the minimum energy condition on the

spline-knot potentials as

dU
—=() (i=l,2,, m-1)
au,

(7)

we obtain a set of linear equations for the spline-knot

variables u,. Since part of these variables are given as the

strip conductor potential u, = u,+ ~= F’, these equations

become inhomogeneous, as shown below, and can be solved

on a computer:

W1—1

~ al,u, = -(a,. +(xt,+,)v
,=1

J#S, $+l

(i=l,2,.. .,s–l, ,s+2,. -.,1) l). (8)

Substituting the solutions of the spline-knot potentials

into the expressions of the Fourier coefficients and then

into those of the total energy, we obtain the line capaci-

tance as

C=$. (9)

In similar fashion, when the dielectric materials in the

structure are replaced by air, the line capacitance is given

by the corresponding total energy UO as

2U0
co=—

V2

The characteristic impedance Z,

constant c.ff, and the wavelength

can be obtained, respectively, by

(lo)

the effective dielectric

reduction factor A/A ~

1

and

‘=“o&

(11)

c
Ceff= —

co
(12)

:O=i
(13)

where u, is the light velocity in vacuum.

t

1
s/w=o .1

55
..* . . . . . . . . . .. .. . . . . . ...* . . . . ... . . .."". """". """".""

,,.-
,,‘

z ~’

(n)
;

0.7
●... . . . . .... .. .. .. ..--...... . . . . . . . .... ... . .. ...-

,.*,.
50 –

8.0
,,” ------- . .. -0-------------------- -*--

..*--,’ .*. ”
,!’ ,,,

● ,,/,..

I I I I I I 1
0 20 40 60

NUMBER OF SPLINE-KNOTS m

Fig. 4. Numerical convergence property of the characteristic impedance
~gainst the number of splme-knots. h/W= 1.382, a/W= 1~/ W = 27.6,

a/2 = q + S + W/2, c. =12.9, N = 2000.
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Fig. 5 Numerical convergence property of the characteristic impedance
against the number of Fourier series terms. 17/W= 1.382, a/W=
lr/W=27.6, a/2= q+S+ W/2, c, =129, m=60.

III. NUMERICAL AND EXPERIMENTAL RESULTS

Figs. 4 and 5 show the numerical convergence properties

of the characteristic impedance against the number of

spline-knots m and the Fourier series terms N, respec-

tively. These results indicate that satisfactory numbers for

the convergence are given by m >50 and N >2000. The

computation time needed for the characterization of one

structure is about 6 s on the HITAC M260H computer.

Figs. 6 and 7 show the estimated proximity effects on

the characteristic impedance and on the wavelength reduc-

tion factor, respectively, for the case of GaAs substrate

(c, = 12.9) and alumina ceramic substrate (E, = 9.7). The

numerical results given above were obtained by locating

strip conductors at the center of substrates (i.e., a/2 = q

+ S + W/2) and giving sufficiently large values for the

separation between strip conductors and outer conductor

walls (i.e., a/W = b/W= 27.6) to eliminate the effect of

the outer conductor. Figs. 8 and 9 show the proximity

effects of a vertical conductor wall near the substrate edge

on the characteristic impedance and on the wavelength

reduction factor, respectively, for the case of GaAs sub-

strat e.
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Fig. 6. Estimated proximity effects on the characteristic impedance.
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Fig. 7. Estimated proximity effects on the wavelength redtrctlon factor.
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Fig. 8. Estimated proximity effects of conductor watl and substrate
edge on the characteristic Impedance.

The line capacitance (per unit length) was measured to

confirm theoretical results on the proximity effects by

using a Boonton 72-BD capacitance meter. Experimental

parameters of our sample transmission line were C,= 2.55

(polystyrefie), W= 4.02 mm, and h = 10.45 mm. Measured

capacitance values are compared with theoretical ones in

Fig. 10. These results agree with our analysis with errors of

about 1 percent.
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Fig. 9, Estimated proximity effects of conductor wall and substrate

edg~onthe wavelength reduction factor
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Fig. 10. Measured line capacitance values compared with theoretical
values for sample line parameters, c, =2.55 (polystyrene), W=
4,02 mm, and h=10.45mm

IV. EDGE-C• MPENSATED MICROSTRIP LINES

As can be observed from the above results, all of the

proximity effects on the transmission characteristics are

caused by the fact that the electric field is no longer

completely concentrated in the dielectric substrate but

rather is partly located in the air, namely. by the decrease

of the line capacitance.

A way to compensate for the proximity effects is to

increase theline capacitance by widening the strip conduc-

tor width. Hence, we propose an edge-compensated mi-

crostrip line (ECM line), whose structure is as shown in

Fig. 1.

The necessary dimensions of the strip width of ECM

lines for keeping the characteristic impedance constant can

be found by using the above analysis method. Fig. 11
shows the calculated strip width of 50 ~ ECM lines for the

case of GaAs and alumina ceramic substrate, where WO is

defined as the strip width of a classical 50 Q microstrip

line for the same substrate material. Fig. 12 shows the

wavelength reduction factor for the 50 0 ECM lines thus

designed.
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Fig. 11. Designed strip width of50QECM lines.

V. APPROXIMATE POLYNOMIAL FORMULAS

The above numerical data on ECM lines can also be

expressed in simple approximate formulas by a least-square

curve-fitting procedure. The following polynomial formu-

las give the designed strip width W and the wavelength

reduction factor A/A ~ of 50 Q ECM lines in terms of the

separation S normalized by the 50 0 rnicrostrip with Wo:

; = ; and’ (0.1< s/’wo< 5.0) (14)
o ~=()

;= ; b#’ (0.1< s/’wo < 5.0) (15)
o ~=o

where u = log lo ( S/ We), and the coefficients of the poly-

nomials, a. and bn, for GaAs and alumina ceramic sub-

strate are given in Table I. The errors of these polynomial

formulas against the above theoretical results are less than

1 percent.

VI. CONCLUSION

In this paper, we described an analysis method for the

proximity effects in high-packing-density MMIC’S, the

characteristics of proposed ECM lines as a measure of

the proximity effects, and simple polynomial formulas for

the design of 50 L? ECM lines.
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Fig. 12. Wavelength reduction factor of 50 Q ECM hnes.

TABLE I

COEFFICIENTS OF THE POLYNOMIALS IN THE APPROXIMATE DESIGN

FORMULAS OF 500 ECM LINES

I POLYNOMIAL COEFFICIENTS I

GaAs

---1

Alumina Ceramic

q 12.9 9.7

h/W.
I 1.382 I 1.029 I

III al bl I ai I bi
I

o 1.0367 3.534610-1 1.0?62

+

3.9554 .10-’

1 - 1.8228 10-1
- 2.5010 .10-2 - 9.8654 .10-2 - 1 .7792.10-2

2 1 .7147.10-’ 2.2373.10
-2

1.3236 .10-1
! ’24

3 1 .328910-1 1.8016.10
-2

3.3574 .10-2

,5

6.8338.10 -3

L - 8.0565 10-2 - 1.0253 .10-2 - 7.0952 10-2 - 1 .2018.10-2

I 5 I -8107810-2 I -1.0717 .10-2 I -2.433610-2 I .4.69,7 .,0-3 I

6 - 1.5946.10-2 - 2.1593 .10-3 2.2125 .10-3 I W2A-_l

The numerical convergence of the transmission parame-

ters with this method was satisfactory for reasonable num-

bers of Fourier terms and spline-kmts. Although some

approximations, such as “a thin-strip conductor, have been

made in’ this analysis, experimental results on the line

capacitance have indicated good agreement with theory.

APPENDIX I

The symbols appearing in (5a), (5b), and (5c) are defined as follows:

[

[

sin($l.x,) - sin(fl.x,-l) sin(fl.x,+l) -sin (~~.x,)
.%2 1 (r=l,2,, k-1)

X, —xz_l Xl+l —xt
A,,, =

sin(tl.x~) – sin($lHx~_l)
$;: (i=k)

xk—x~.l

(Al)
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[

[

sin ($2.x, ) – sin (t2nx1- I) sin(&2.x,+,)-sin (&2.xt)
‘%?

X, —xI_l
1

(2=k+l, k+2,..., z’1)l)
X,+l—XL

Bnl = (A2)
sin(&.xk+l) – sin(t2nxk)

– (;: (i=k)
‘k+l —xk

[

sin(t3Hx, )–sin(&3.xz-1) sin(f,.xz+l) - sin(&3nxj)
Cn, = (;: — —

1
(2=1,2,...,1) l).

xl —xl_~ xi+l —xL

APPENDIX II

The symbols appearing in (6) are defined as follows:

[

E cO~2n
Bn,BnJ

a2,, = ~=1 qtanh(&.~)

o

(i, j=l,2,..., k)

(otherwise)

(Z, j=k, k+l, ”,m-1)

(otherwise)

1-:,‘;:;
n

—~An, (i=l,2,.., k-l; j=k)

-E, ‘;;;
n

—eAnJ (i=k; j=l,2,. -,k-l)

, -;, ‘;:;

n

—coBat (i=k+l, k+2,..., wl; j=k)k)
a4,J =

-:1 ‘;:;

n

—cOBnJ (i=k; j=k+l, k+2,...,1)l)
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